This document covers the general description of benchmarking test piece geometries, i.e. artefacts, along with quantitative and qualitative measurements to be taken on the benchmarking test piece(s) to assess the performance of additive manufacturing (AM) systems.
This performance assessment can serve the following two purposes:
—    AM system capability evaluation;
—    AM system calibration.
The benchmarking test piece(s) is (are) primarily used to quantitatively assess the geometric performance of an AM system. This document describes a suite of test geometries, each designed to investigate one or more specific performance metrics and several example configurations of these geometries into test build(s). It prescribes quantities and qualities of the test geometries to be measured but does not dictate specific measurement methods. Various user applications can require various grades of performance. This document discusses examples of feature configurations, as well as measurement uncertainty requirements, to demonstrate low- and high-grade examination and performance. This document does not discuss a specific procedure or machine settings for manufacturing a test piece.

  • Draft
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the technical requirements, test methods, detection rules, marking/labelling, packaging, transportation and storage of poly(lactic acid) (PLA) based filament for use in specific additive manufacturing technology, such as materials extrusion (MEX). The document applies to PLA based filament for MEX additive manufacturing applications.

  • Standard
    12 pages
    English language
    sale 15% off

This document covers the general description of benchmarking test piece geometries, i.e. artefacts, along with quantitative and qualitative measurements to be taken on the benchmarking test piece(s) to assess the performance of additive manufacturing (AM) systems. This performance assessment can serve the following two purposes: — AM system capability evaluation; — AM system calibration. The benchmarking test piece(s) is (are) primarily used to quantitatively assess the geometric performance of an AM system. This document describes a suite of test geometries, each designed to investigate one or more specific performance metrics and several example configurations of these geometries into test build(s). It prescribes quantities and qualities of the test geometries to be measured but does not dictate specific measurement methods. Various user applications can require various grades of performance. This document discusses examples of feature configurations, as well as measurement uncertainty requirements, to demonstrate low- and high-grade examination and performance. This document does not discuss a specific procedure or machine settings for manufacturing a test piece.

  • Standard
    40 pages
    English language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off

Granular materials and fine powders are widely used in industrial applications. To control and optimize processing methods, these materials have to be precisely characterized. The characterization methods are related either to the properties of the grains (granulometry, morphology, chemical composition, ...) and to the behaviour of the bulk powder (flowability, density, blend stability, electrostatic properties, ...). The complex behaviours of granular and powder material has motivated the development of additional techniques to obtain reproducible and interpretable results. Many industries are concerned in different fields: additive manufacturing, food processing, pharmaceuticals, bulk material handling. The present technical report is focused on additive manufacturing. Metallic powders are widely used in Additive Manufacturing (AM) processes involving powder bed likepowder bed fusion (LBM, EBM, ...) or binder jetting. During such operations, successive thin layers of powderare created with a ruler or with a rotating cylinder. Each layer is then partially sintered or melted with an energy beam or glue with binder to build the parts. The layer thickness defines the vertical resolution of the printer; a thin layer leads to a better resolution. In order to obtain a thin layer, the powder is as fine as possible. However, as the grain size decreases, cohesiveness typically increases and spreadability, as defined within ASTM F42 / ISO/TC 261, is likely to decrease. The quality of the parts build with AM is thus directly influenced by powder flow properties.
Visual observation of layer homogeneity is usually the only way for operators to quantify the spreadability of powders  during  recoating. However, relating the powder characteristics to its spreadability during there coating process before hand should provide a more cost-effective way to classify and select the optimal powder and recoating speed combinations.
The aim of this technical report is to present an example of how the characterization of the macroscopic properties of metallic powders can be related to their spreadability inside LBM printers. A new technique combining measurements inside a LBM printer and image processing have been developed to quantify the homogeneity of the powder bed layers during recoating. Moreover, the flowability of four metal powders has been investigated with an automated rotating drum method, whose dynamic cohesive index measurement has been shown to correlate with the spreadability of the powder during the recoating  process.Furthemore, the PSD and morphology of each powder was characterized for each batch before testing bystatic image analysis method (ISO_13322-1_2014). The general principle of the study is presented on Figure 1

  • Technical report
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the requirements for manufacturing centers, in which additive manufacturing methods are used (referred to below as additive manufacturing centers), which are independent of the material and manufacturing method used.
This document specifies criteria for additive manufacturing processes as well as quality-relevant characteristics and factors along the process chain and defines activities and sequences within an additive manufacturing center.
This document is applicable to the additive manufacturing technologies defined according to DIN EN
ISO/ASTM 52900 and follows an approach oriented to the manufacturing process.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This guide will include post-process non-destructive testing of additive manufacturing (AM) of metallic parts with a comprehensive approach. It will cover several sectors and a similar framework can be applied to other materials (e.g. ceramics, polymers, etc.). In-process NDT and metrology standards will be referenced as they are being developed. This guide will present current standards capability to detect which of the Additive Manufacturing (AM) flaw types and which flaws require new standards, using a standard selection tool. NDT methods potential to detect AM flaws not covered by current standards will be recommended, and as new standards for flaws not covered by current standards are developed, they will be referenced in this standard via document updates.
This part of the International Standard:
⎯ Categorises AM defects
⎯ A review of relevant current standards
⎯ Enables suitable current standard NDT method/s to be used;
⎯ Details method specific to additive manufacturing and complex 3D geometries;
⎯ Outlines existing non-destructive testing techniques applicable to some AM types of defects;
This part of the International Standard is aimed at users and producers of additive
manufacturing processes. It applies wherever additive processes are used, and to the following fields in particular:
⎯ Safety critical applications;
⎯ Assured confidence in additive manufacturing;
⎯ Reverse engineered products manufactured by additively manufactured;
⎯ Test bodies wishing to compare requested and actual geometries.
NOTE Most metal inspection methods in NDT use ultrasound or X-rays, but these techniques cannot always cope with the complicated shapes typically produced by AM. In most circumstances X-ray computed tomography (CT) is a more suitable method, but it also has limitations and room for improvement or adaptation to AM, on top of being a costly method both in time and money.

  • Technical report
    168 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    164 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes the required or the achievable classes of part properties for additive manufactured polymer parts in order to get a common understanding on part quality. It is aimed at providers of manufacturing services for polymer parts who use additive manufacturing machines and at the customers for these services. Designers of parts as well as buyers and providers of manufacturing services can specify, in a traceable manner, the required or the achievable level of part properties with the aid of this document. The classification is based on mechanical, physical and geometrical properties. Further properties can be defined between buyer and provider of manufacturing. This document is applicable to parts that have been manufactured from a thermoplastic polymer by means of thermal reaction fusion of material typically applied by a powder bed fusion (PBF) or material extrusion (MEX) processes. This document is also applicable to thermoplastic parts made by other processes, provided that due consideration is given to process-specific topics. The classification of part properties applies to parts in as-built condition, that have been unpacked from the build space, with all support structures removed, but prior to any post-processing operations. Specific industries (e.g. aerospace and medical) typically specify additional requirements.

  • Standard
    18 pages
    English language
    sale 15% off
  • Standard
    19 pages
    French language
    sale 15% off

The requirements in this document are for part manufacturers using additive manufacturing techniques and are independent of the used material and manufacturing method.
This document specifies criteria for AM relevant processes as well as quality-relevant characteristics and factors along the additive system operations and defines activities and sequences within an additive manufacturing production site.
This document is applicable to the additive manufacturing technologies defined in ISO/ASTM 52900 and defines quality assurance measures along the manufacturing process.
Environment, health and safety aspects are not covered comprehensively in this document. The corresponding content is addressed in the equipment manufacturer guidelines and ISO/ASTM 52931, ISO 27548, ISO/ASTM 52933 and ISO/ASTM 52938-1.
This document provides requirements that are additional to those provided by a quality management system (such as ISO 9001, ISO/TS 22163, ISO 19443, EN 9100, ISO 13485, IATF 16949). Additionally, this document can be used to establish quality management system relevant content that is specific to AM-technology.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides an example of the relation between the characterization of certain macroscopic properties of metallic powders and their spreadability in an PBF-LB/M AM machines.
This relation is based on a new technique combining measurements inside a PBF-LB/M machine and image processing developed to quantify the homogeneity of the powder bed layers during spreading.
In this document, the flowability of five metal powders are investigated with an automated rotating drum method, whose dynamic cohesive index measurement is shown to establish a correlation with the spreadability of the powder during the layer deposition operation. Furthemore, the particule size distribution (PSD) and morphology of each powder is characterized before testing by static image analysis method (according to ISO 13322-1).
The general principle of the method is described in Figure 1.

  • Technical report
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The requirements in this document are for part manufacturers using additive manufacturing techniques and are independent of the used material and manufacturing method. This document specifies criteria for AM relevant processes as well as quality-relevant characteristics and factors along the additive system operations and defines activities and sequences within an additive manufacturing production site. This document is applicable to the additive manufacturing technologies defined in ISO/ASTM 52900 and defines quality assurance measures along the manufacturing process. Environment, health and safety aspects are not covered comprehensively in this document. The corresponding content is addressed in the equipment manufacturer guidelines and ISO/ASTM 52931, ISO 27548, ISO/ASTM 52933 and ISO/ASTM 52938-1. This document provides requirements that are additional to those provided by a quality management system (such as ISO 9001, ISO/TS 22163, ISO 19443, EN 9100, ISO 13485, IATF 16949). Additionally, this document can be used to establish quality management system relevant content that is specific to AM-technology.

  • Standard
    39 pages
    English language
    sale 15% off
  • Standard
    41 pages
    French language
    sale 15% off

This document categorises additive manufacturing (AM) defects in DED and PBF laser and electron beam category of processes, provides a review of relevant current NDT standards, details NDT methods that are specific to AM and complex 3D geometries and outlines existing non‑destructive testing techniques that are applicable to some AM types of defects.
This document is aimed at users and producers of AM processes and it applies, in particular, to the following:
—    safety critical AM applications;
—    assured confidence in AM;
—    reverse engineered products manufactured by AM;
—    test bodies wishing to compare requested and actual geometries.

  • Technical report
    168 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    164 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides an example of the relation between the characterization of certain macroscopic properties of metallic powders and their spreadability in an PBF-LB/M AM machines. This relation is based on a new technique combining measurements inside a PBF-LB/M machine and image processing developed to quantify the homogeneity of the powder bed layers during spreading. In this document, the flowability of five metal powders are investigated with an automated rotating drum method, whose dynamic cohesive index measurement is shown to establish a correlation with the spreadability of the powder during the layer deposition operation. Furthemore, the particule size distribution (PSD) and morphology of each powder is characterized before testing by static image analysis method (according to ISO 13322-1). The general principle of the method is described in Figure 1.

  • Technical report
    14 pages
    English language
    sale 15% off
  • Draft
    15 pages
    English language
    sale 15% off
  • Draft
    15 pages
    English language
    sale 15% off

This document categorises additive manufacturing (AM) defects in DED and PBF laser and electron beam category of processes, provides a review of relevant current NDT standards, details NDT methods that are specific to AM and complex 3D geometries and outlines existing non‑destructive testing techniques that are applicable to some AM types of defects. This document is aimed at users and producers of AM processes and it applies, in particular, to the following: — safety critical AM applications; — assured confidence in AM; — reverse engineered products manufactured by AM; — test bodies wishing to compare requested and actual geometries.

  • Technical report
    159 pages
    English language
    sale 15% off
  • Draft
    158 pages
    English language
    sale 15% off
  • Draft
    158 pages
    English language
    sale 15% off

This document specifies the requirements for medical image-based modelling for 3D printing for medical applications. It concerns accurate 3D data modelling in the medical field using medical image data generated from computed tomography (CT) devices. It also specifies the principal considerations for the general procedures of medical image-based modelling. It excludes soft tissue modelling from magnetic resonance image (MRI).

  • Standard
    15 pages
    English language
    sale 15% off
  • Draft
    15 pages
    English language
    sale 15% off
  • Draft
    15 pages
    English language
    sale 15% off

This document specifies the features of electron beam powder bed fusion of metals (EB-PBF-M) and
provides detailed design recommendations.
Some of the fundamental principles are also applicable to other additive manufacturing (AM) processes, provided that due consideration is given to process-specific features. This document also provides a state of the art review of design guidelines associated with the use of powder bed fusion (PBF) by bringing together relevant knowledge about this process and by extending the scope of ISO/ASTM 52910.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the general principles to be followed when test specimens of thermoplastic materials are prepared by laser-based powder bed fusion, which is also called laser sintering. The laser-sintering process is used to prepare specimens layer upon layer in which thermal energy selectively fuses regions of a powder bed. This document provides a basis for establishing reproducible sintering conditions. Its purpose is to promote uniformity in describing the main process parameters, build orientation of the sintering process and also to establish uniform practice in reporting sintering conditions.
The particular conditions required for reproducible preparation of test specimens which will give comparable results will vary for each material used. These conditions shall be agreed upon between the interested parties.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides a guide for risk assessment and implementation of prevention and protection measures relating to additive manufacturing with metallic feedstocks (e.g. powders, wires,…). The risks covered by this document concern the entire process value chain, from the reception of the raw material to the output of the parts for delivery. The management of waste and discharges is also taken
into account.

  • Standard
    44 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the features of electron beam powder bed fusion of metals (PBF-EB/M) and provides detailed design recommendations.
Some of the fundamental principles are also applicable to other additive manufacturing (AM) processes, provided that due consideration is given to process-specific features.
This document also provides a state of the art review of design guidelines associated with the use of powder bed fusion (PBF) by bringing together relevant knowledge about this process and by extending the scope of ISO/ASTM 52910.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the features of electron beam powder bed fusion of metals (PBF-EB/M) and provides detailed design recommendations. Some of the fundamental principles are also applicable to other additive manufacturing (AM) processes, provided that due consideration is given to process-specific features. This document also provides a state of the art review of design guidelines associated with the use of powder bed fusion (PBF) by bringing together relevant knowledge about this process and by extending the scope of ISO/ASTM 52910.

  • Standard
    26 pages
    English language
    sale 15% off
  • Standard
    30 pages
    French language
    sale 15% off

This document provides specifications and illustrations for the positioning and orientation of parts with regards with coordinate systems and testing methodologies for additive manufacturing (AM) technologies in an effort to standardize the method of representation used by AM users, producers, researchers, educators, press/media, and others, particularly when reporting results from testing of parts made on AM systems. Included specifications cover coordinate systems and the location and orientation of parts. It is intended to be in accordance with the principles of ISO 841 and to clarify the specific adaptation of those principles for additive manufacturing.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard covers supplementary guidelines for evaluation of mechanical properties including static/quasi-static and dynamic testing of metals made by additive manufacturing in an effort to standardize terminology that should be used when reporting results from testing of directly printed samples and/or those excised from printed parts made by this technique. The standards listed in the draft are currently being used for conventionally processed materials (e.g. cast, rolled, wrought) and serve as a guideline for this supplement

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The parameters and recommendations presented in this standard relate mainly to the material polyamide 12 (PA12). Explicit references are also made to polyamide 11 (PA11). The extent to which these parameters and recommendations can be transferred to other materials must be verified on a case-by-case basis.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Provide guidance on the development and delivery of Round Robin studies for the determination of process variance in the production of materials using Additive Manufacturing techniques. The guidance will be limited to the variation in AM materials, not in variation in measurement tools or measurement methods which are covered by existing Inter-laboratory comparison guidance.

  • Technical report
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides guidance and requirements for risk assessment and implementation of prevention and protection measures relating to additive manufacturing with metallic powders.
The risks covered by this document concern all sub-processes composing the manufacturing process, including the management of waste.
This document does not specify requirements for the design of machinery and equipment used for additive manufacturing.

  • Standard
    44 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the general principles to be followed when test specimens of thermoplastic materials are prepared by laser-based powder bed fusion (PBF-LB/P), which is commonly known as laser sintering. The (PBF-LB/P) process is used to prepare test specimens layer upon layer in which thermal energy selectively fuses regions of a powder bed. This document provides a basis for establishing reproducible and reportable sintering conditions. Its purpose is to promote uniformity in describing the main process parameters, build orientation of the sintering process and also to establish uniform practice in reporting sintering conditions.
This document does not specify the test procedure itself.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides specifications and illustrations for the positioning and orientation of parts with regards with coordinate systems and testing methodologies for additive manufacturing (AM) technologies in an effort to standardize the method of representation used by AM users, producers, researchers, educators, press/media, and others, particularly when reporting results from testing of parts made on AM systems. Included specifications cover coordinate systems and the location and orientation of parts. It is intended to be in accordance with the principles of ISO 841 and to clarify the specific adaptation of those principles for additive manufacturing.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides guidance and requirements for risk assessment and implementation of prevention and protection measures relating to additive manufacturing with metallic powders. The risks covered by this document concern all sub-processes composing the manufacturing process, including the management of waste. This document does not specify requirements for the design of machinery and equipment used for additive manufacturing.

  • Standard
    35 pages
    English language
    sale 15% off
  • Standard
    38 pages
    French language
    sale 15% off

This document specifies the general principles to be followed when test specimens of thermoplastic materials are prepared by laser-based powder bed fusion (PBF-LB/P), which is commonly known as laser sintering. The (PBF-LB/P) process is used to prepare test specimens layer upon layer in which thermal energy selectively fuses regions of a powder bed. This document provides a basis for establishing reproducible and reportable sintering conditions. Its purpose is to promote uniformity in describing the main process parameters, build orientation of the sintering process and also to establish uniform practice in reporting sintering conditions. This document does not specify the test procedure itself.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    French language
    sale 15% off

This document provides specifications and illustrations for the positioning and orientation of parts with regards with coordinate systems and testing methodologies for additive manufacturing (AM) technologies in an effort to standardize the method of representation used by AM users, producers, researchers, educators, press/media, and others, particularly when reporting results from testing of parts made on AM systems. Included specifications cover coordinate systems and the location and orientation of parts. It is intended to be in accordance with the principles of ISO 841 and to clarify the specific adaptation of those principles for additive manufacturing.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off

This document provides guidance and recommendations for the qualification of polymeric materials intended for laser-based powder bed fusion of polymers (PBF-LB/P). The parameters and recommendations presented in this document relate mainly to the material polyamide 12 (PA12), but references are also made to polyamide 11 (PA11). The parameters and recommendations set forth herein cannot be applicable to other polymeric materials.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document covers supplementary guidelines for evaluation of mechanical properties including static/quasi-static and dynamic testing of metals made by additive manufacturing (AM) to provide guidance toward reporting when results from testing of as-build specimen or those excised from printed parts made by this technique or both.
This document is provided to leverage already existing standards. Guidelines are provided for mechanical properties measurements and reporting for additively manufactured metallic specimen as well as those excised from parts.
This document does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.
This document expands upon the nomenclature of ISO/ASTM 52900 and principles of ISO/ASTM 52921 and extends them specifically to metal additive manufacturing. The application of this document is primarily intended to provide guidance on orientation designations in cases where meaningful orientation/direction for AM cannot be obtained from available test methods.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document covers supplementary guidelines for evaluation of mechanical properties including static/quasi-static and dynamic testing of metals made by additive manufacturing (AM) to provide guidance toward reporting when results from testing of as-build specimen or those excised from printed parts made by this technique or both. This document is provided to leverage already existing standards. Guidelines are provided for mechanical properties measurements and reporting for additively manufactured metallic specimen as well as those excised from parts. This document does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use. This document expands upon the nomenclature of ISO/ASTM 52900 and principles of ISO/ASTM 52921 and extends them specifically to metal additive manufacturing. The application of this document is primarily intended to provide guidance on orientation designations in cases where meaningful orientation/direction for AM cannot be obtained from available test methods.

  • Standard
    13 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off

This document is focused on the management of the round robin study (RRS) and can provide guidance for the scope development, planning, and execution of the RRS study. It can provide guidance to identify the feedstock, machine operations, process controls, and post-processing operations prior to running the study. RR organizers can identify controlled and free parameters in the study. This document can also provide guidance on the selection and use of test methods that can be applicable. The RRS investigates the variations found in AM parts. The outcome of the study can be used to improve the maturation of AM technologies.
A RRS, as described in this document, is different from an inter-laboratory comparison because an inter-laboratory study establishes the variability in a measurement method when undertaken by multiple users on a well-controlled artefact.

  • Technical report
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is focused on the management of the round robin study (RRS) and can provide guidance for the scope development, planning, and execution of the RRS study. It can provide guidance to identify the feedstock, machine operations, process controls, and post-processing operations prior to running the study. RR organizers can identify controlled and free parameters in the study. This document can also provide guidance on the selection and use of test methods that can be applicable. The RRS investigates the variations found in AM parts. The outcome of the study can be used to improve the maturation of AM technologies. A RRS, as described in this document, is different from an inter-laboratory comparison because an inter-laboratory study establishes the variability in a measurement method when undertaken by multiple users on a well-controlled artefact.

  • Technical report
    8 pages
    English language
    sale 15% off
  • Technical report
    9 pages
    French language
    sale 15% off

This document is intended to serve as a best practice for the identification and “seeding” of
nondestructively detectable flaw replicas of metal alloy PBF-LB and DED processes. Three
seeding categories are described: 1. process flaws through CAD design, 2. build parameter
manipulation, 3. subtractive manufacturing, and 4. depositing/inserting flaws after processing.
These include flaws present within as-deposited materials, post heat-treated or HIP processed
material, and those flaws made detectable because of post-processing operations. Geometrical
aspects or measurement are not the subjects of this document.

  • Technical report
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard includes creation of optimized data for Medical Additive Manufacturing (MAM) which is
generated from static modalities like Magnetic resonance images (MRI), Computed Tomogram (CT), Positron Emission Tomogram (PET), SPECT and Dynamic modalities like ultrasound and optical image
data. It addresses medical-specific data quality requirements and medical image data acquisition
processing approaches for accurate solid medical models and devices based on real human
information. Also this data can be used for animal surgeries (Veterinary surgery).

  • Technical report
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes and defines terms used in additive manufacturing (AM) technology, which applies the additive shaping principle and thereby builds physical three-dimensional (3D) geometries by successive addition of material.
The terms have been classified into specific fields of application.

  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides recommended practices for process qualification of metal production parts produced with the powder bed fusion by laser beam process (PBF-LB/M). This document covers only process qualification issues directly related to the AM equipment and does not cover feedstock qualification or post processing beyond powder removal. This guideline addresses IQ, OQ, and PQ issues directly related to the AM machine and connected equipment. Physical facility, personnel, process and material issues are only included to the extent necessary to support machine qualification.

  • Technical specification
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical specification
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is intended to serve as a best practice for the identification and “seeding” of nondestructively detectable flaw replicas of metal alloy PBF and DED processes. Three seeding categories are described:
a) process flaws through CAD design;
b) build parameter manipulation;
c) subtractive manufacturing.
These include flaws present within as-deposited materials, post heat-treated or HIP processed material, and those flaws made detectable because of post-processing operations. Geometrical aspects or measurement are not the subjects of this document.
WARNING — This document does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Technical report
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is intended to serve as a best practice for the identification and “seeding” of nondestructively detectable flaw replicas of metal alloy PBF and DED processes. Three seeding categories are described: a) process flaws through CAD design; b) build parameter manipulation; c) subtractive manufacturing. These include flaws present within as-deposited materials, post heat-treated or HIP processed material, and those flaws made detectable because of post-processing operations. Geometrical aspects or measurement are not the subjects of this document. WARNING — This document does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this document to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  • Technical report
    20 pages
    English language
    sale 15% off
  • Technical report
    21 pages
    French language
    sale 15% off
  • Draft
    19 pages
    English language
    sale 15% off

This document establishes the required or the achievable classes of part properties for additive manufactured polymer parts in order to get a common understanding on part quality. It is aimed at providers of manufacturing services for polymer parts who use additive manufacturing machines and at the customers for these services. Designers of parts as well as buyers and providers of manufacturing services can specify, in a traceable manner, the required or the achievable level of part properties with the aid of this document. The classification is based on mechanical, physical and geometrical properties. Further properties can be defined between buyer and provider of manufacturing.
This document is applicable to parts that have been manufactured from a thermoplastic polymer by means of thermal reaction fusion of material typically applied by a powder bed fusion (PBF) or material extrusion (MEX) processes. This document is also applicable to thermoplastic parts made by other processes, provided that due consideration is given to process-specific topics.
The classification of part properties applies to parts in as-built condition, that have been unpacked from the build space, with all support structures removed, but prior to any post-processing operations.
Specific industries (e.g. aerospace and medical) typically specify additional requirements.

  • Draft
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides guidance and recommendations for the qualification of polymeric materials intended for laser-based powder bed fusion of polymers (PBF-LB/P). The parameters and recommendations presented in this document relate mainly to the material polyamide 12 (PA12), but references are also made to polyamide 11 (PA11). The parameters and recommendations set forth herein cannot be applicable to other polymeric materials.

  • Standard
    18 pages
    English language
    sale 15% off
  • Standard
    19 pages
    French language
    sale 15% off

This document includes the creation of optimized data for medical additive manufacturing (MAM). These data are generated from static modalities, such as magnetic resonance imaging (MRI), computed tomography (CT). This document addresses improved medical image data, and medical image data acquisition processing and optimization approaches for accurate solid medical models, based on real human and animal data.
Solid medical models are generally created from stacked 2D images output from medical imaging systems. The accuracy of the final model depends on the resolution and accuracy of the original image data. The main factors influencing accuracy are the resolution of the image, the amount of image noise, the contrast between the tissues of interest and artefacts inherent in the imaging system.

  • Technical report
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes and defines terms used in additive manufacturing (AM) technology, which
applies the additive shaping principle and thereby builds physical three-dimensional (3D) geometries
by successive addition of material.
The terms have been classified into specific fields of application.

  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document includes the creation of optimized data for medical additive manufacturing (MAM). These data are generated from static modalities, such as magnetic resonance imaging (MRI), computed tomography (CT). This document addresses improved medical image data, and medical image data acquisition processing and optimization approaches for accurate solid medical models, based on real human and animal data. Solid medical models are generally created from stacked 2D images output from medical imaging systems. The accuracy of the final model depends on the resolution and accuracy of the original image data. The main factors influencing accuracy are the resolution of the image, the amount of image noise, the contrast between the tissues of interest and artefacts inherent in the imaging system.

  • Technical report
    24 pages
    English language
    sale 15% off
  • Technical report
    26 pages
    French language
    sale 15% off
  • Technical report
    26 pages
    French language
    sale 15% off
  • Draft
    25 pages
    English language
    sale 15% off

This document addresses installation qualification (IQ), operational qualification (OQ), and performance qualification (PQ) issues directly related to the additive manufacturing system that has a direct influence on the consolidation of material. The first three elements of process validation, process mapping, risk assessment, and validation planning, are necessary pre-conditions to machine qualification, however, they are outside the scope of this document.
This document covers issues directly related to the AM equipment and does not cover feedstock qualification or post processing beyond powder removal.
Physical facility, personnel, process and material issues are only included to the extent necessary to support machine qualification.

  • Technical specification
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical specification
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes and defines terms used in additive manufacturing (AM) technology, which applies the additive shaping principle and thereby builds physical three-dimensional (3D) geometries by successive addition of material. The terms have been classified into specific fields of application.

  • Standard
    28 pages
    English language
    sale 15% off
  • Standard
    29 pages
    French language
    sale 15% off
  • Draft
    28 pages
    English language
    sale 15% off

This document addresses installation qualification (IQ), operational qualification (OQ), and performance qualification (PQ) issues directly related to the additive manufacturing system that has a direct influence on the consolidation of material. The first three elements of process validation, process mapping, risk assessment, and validation planning, are necessary pre-conditions to machine qualification, however, they are outside the scope of this document. This document covers issues directly related to the AM equipment and does not cover feedstock qualification or post processing beyond powder removal. Physical facility, personnel, process and material issues are only included to the extent necessary to support machine qualification.

  • Technical specification
    20 pages
    English language
    sale 15% off
  • Technical specification
    20 pages
    French language
    sale 15% off
  • Draft
    20 pages
    English language
    sale 15% off
  • Draft
    20 pages
    French language
    sale 15% off

This document specifies the framework for an Additive Manufacturing Service Platform (AMSP). The following elements are within the scope of this document: — Overview introducing the stakeholders and workflow of an AMSP. — Requirements specifying various prerequisite conditions from different aspects. — Framework defining a general functional architecture based on the identified requirements. — Use cases showing typical work modes of an AMSP. This document is applicable when individuals or organizations (e.g. commercial enterprises, government agencies and non-profit organizations) build an AMSP or improve existing ones to provide 3D printing and other services specific to the submission, design and creation of AM parts.

  • Standard
    15 pages
    English language
    sale 15% off
  • Draft
    15 pages
    English language
    sale 15% off

This document describes a method for defining requirements for plastic materials used in extrusion-based additive manufacturing (AM) processes. Materials include unfilled, filled, and reinforced plastic materials suitable for processing into parts. These materials can also contain special additives (e.g. flame retardants, stabilizers, etc.). Processes include all material extrusion-based AM processes.
This document is intended for use by manufacturers of materials, feedstocks, plastic parts or any combination of the three using material extrusion-based AM.
NOTE       In some cases, material manufacturers can also be feedstock manufacturers. In other cases, a material manufacturer can supply materials (example: pellets) to a feedstock manufacturer (example: converter of pellets into filaments).
This document does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health, and environmental practices and determine the applicability of regulatory limitations prior to use.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day