ISO 18077:2018 applies to the reactor physics tests that are performed following a refuelling or other core alteration of a PWR for which nuclear design calculations are required. This document does not address the physics test program for the initial core of a commercial PWR[1]. ISO 18077:2018 specifies the minimum acceptable startup reactor physics test program to determine if the operating characteristics of the core are consistent with the design predictions, which provides assurance that the core can be operated as designed. This document does not address surveillance of reactor physics parameters during operation or other required tests such as mechanical tests of system components (for example the rod drop time test), visual verification requirements for fuel assembly loading, or the calibration of instrumentation or control systems (even though these tests are an integral part of an overall program to ensure that the core behaves as designed). ISO 18077:2018 assumes that the same previously accepted analytical methods are used for both the design of the reactor core and the startup test predictions. It also assumes that the expected operation of the core will fall within the historical database established for the plant and/or sister plants. When major changes are made in the core design, the test program should be reviewed to determine if more extensive testing is needed. Typical changes that might fall in this category include the initial use of novel fuel cycle designs, significant changes in fuel enrichments, fuel assembly design changes, burnable absorber design changes, and cores resulting from unplanned short cycles. Changes such as these may lead to operation in regions outside of the plant's experience database and therefore may necessitate expanding the test program. [1] The good practices discussed in this document should be considered for use in the physics test program for the initial core of a commercial PWR. One test that provides useful information (without additional test time) is the hot-zero-power to hot-full-power reactivity measurement.

  • Standard
    28 pages
    English language
    sale 15% off

ISO 18075:2018 provides guidance for performing and validating the sequence of steady-state calculations leading to prediction, in all types of operating UO2-fuel commercial nuclear reactors, of: - reaction-rate spatial distributions; - reactivity; - change of nuclide compositions with time. ISO 18075:2018 provides: a) guidance for the selection of computational methods; b) criteria for verification and validation of calculation methods used by reactor core analysts; c) criteria for evaluation of accuracy and range of applicability of data and methods; d) requirements for documentation of the preceding.

  • Standard
    23 pages
    English language
    sale 15% off

ISO 19226:2017 provides a procedure for the evaluation of irradiation data in the region between the reactor core and the inside surface of the containment vessel, through the pressure vessel and the reactor cavity, between the ends of active fuel assemblies, given the neutron source in the core. NOTE These irradiation data could be neutron fluence or displacements per atom (dpa), and Helium production. The evaluation employs both neutron flux computations and measurement data from in-vessel and cavity dosimetry, as appropriate. This document applies to pressurized water reactors (PWRs), boiling water reactors (BWRs), and pressurized heavy water reactors (PHWRs). ISO 19226:2017 also provides a procedure for evaluating neutron damage properties at the reactor pressure vessel and internal components of PWRs, BWRs, and PHWRs. Damage properties are focused on atomic displacement damage caused by direct displacements of atoms due to collisions with neutrons and indirect damage caused by gas production, both of which are strongly dependent on the neutron energy spectrum. Therefore, for a given neutron fluence and neutron energy spectrum, calculations of the total accumulated number of atomic displacements are important data to be used for reactor life management.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off