Additive manufacturing — General principles — Fundamentals and vocabulary

This document establishes and defines terms used in additive manufacturing (AM) technology, which applies the additive shaping principle and thereby builds physical three-dimensional (3D) geometries by successive addition of material. The terms have been classified into specific fields of application.

Fabrication additive — Principes généraux — Fondamentaux et vocabulaire

Le présent document établit et définit les termes utilisés dans la technologie de la fabrication additive (FA), qui applique le principe de mise en forme additive et construit ainsi des géométries physiques en trois dimensions (3D) par ajout successif de matériau. Les termes ont été classés par champs d’application spécifiques.

General Information

Status
Published
Publication Date
15-Nov-2021
Current Stage
6060 - International Standard published
Start Date
16-Nov-2021
Due Date
11-Sep-2021
Completion Date
16-Nov-2021
Ref Project

Relations

Buy Standard

Standard
ISO/ASTM 52900:2021 - Additive manufacturing -- General principles -- Fundamentals and vocabulary
English language
28 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO/ASTM 52900:2021 - Fabrication additive -- Principes généraux -- Fondamentaux et vocabulaire
French language
29 pages
sale 15% off
Preview
sale 15% off
Preview
Draft
ISO/ASTM FDIS 52900:Version 14-avg-2021 - Additive manufacturing -- General principles -- Fundamentals and vocabulary
English language
28 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO/ASTM
STANDARD 52900
Second edition
2021-11
Additive manufacturing — General
principles — Fundamentals and
vocabulary
Fabrication additive — Principes généraux — Fondamentaux et
vocabulaire
Reference number
ISO/ASTM 52900:2021(E)
© ISO/ASTM International 2021

---------------------- Page: 1 ----------------------
ISO/ASTM 52900:2021(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO/ASTM International 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester. In the United States, such requests should be sent to ASTM International.
ISO copyright office ASTM International
CP 401 • Ch. de Blandonnet 8 100 Barr Harbor Drive, PO Box C700
CH-1214 Vernier, Geneva West Conshohocken, PA 19428-2959, USA
Phone: +41 22 749 01 11 Phone: +610 832 9634
Fax: +610 832 9635
Email: copyright@iso.org Email: khooper@astm.org
Website: www.iso.org Website: www.astm.org
Published in Switzerland
ii
  © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 2 ----------------------
ISO/ASTM 52900:2021(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
3.1 General terms . 1
3.2 Process categories . 2
3.3 Processing: general . 4
3.4 Processing: data . 5
3.5 Processing: positioning, coordinates and orientation . 7
3.6 Processing: material . 10
3.7 Processing: material extrusion. 11
3.8 Processing: powder bed fusion . 12
3.9 Parts: general . 14
3.10 Parts: applications . 14
3.11 Parts: properties . 14
3.12 Parts: evaluation . 16
Annex A (normative) Identification of AM processes based on process categories and
determining characteristics .17
Annex B (informative) Basic principles .20
Bibliography .25
Alphabetical index .26
iii
© ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 3 ----------------------
ISO/ASTM 52900:2021(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html.
This document was prepared by ISO/TC 261, Additive manufacturing, in cooperation with ASTM
Committee F42, Additive Manufacturing Technologies, on the basis of a partnership agreement between
ISO and ASTM International with the aim to create a common set of ISO/ASTM standards on additive
manufacturing, and in collaboration with the European Committee for Standardization (CEN) Technical
Committee CEN/TC 438, Additive manufacturing, in accordance with the Agreement on technical
cooperation between ISO and CEN (Vienna Agreement).
This second edition of ISO/ASTM 52900 replaces the first edition (ISO/ASTM 52900:2015), which has
been technically revised. The main changes compared to the previous edition are as follows:
— new and modified terms and definitions;
— abbreviations added for seven process categories;
— new annex for the specification of AM processes based on process categories and determining
characteristics (Annex A).
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
  © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 4 ----------------------
ISO/ASTM 52900:2021(E)
Introduction
Additive manufacturing (AM) is the general term for those technologies that successively join material
to create physical objects as specified by 3D model data. These technologies are presently used for
various applications in engineering industry as well as other areas of society, such as medicine,
education, architecture, cartography, toys and entertainment.
During the development of additive manufacturing technology, there have been numerous different
terms and definitions in use, often with reference to specific application areas and trademarks. This
is often ambiguous and confusing, which hampers communication and wider application of this
technology.
It is the intention of this document to provide a basic understanding of the fundamental principles
for additive manufacturing processes, and based on this, to give clear definitions for terms and
nomenclature associated with additive manufacturing technology. The objective of this standardization
of terminology for additive manufacturing is to facilitate communication between people involved in
this field of technology on a worldwide basis.
v
© ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO/ASTM 52900:2021(E)
Additive manufacturing — General principles —
Fundamentals and vocabulary
1 Scope
This document establishes and defines terms used in additive manufacturing (AM) technology, which
applies the additive shaping principle and thereby builds physical three-dimensional (3D) geometries
by successive addition of material.
The terms have been classified into specific fields of application.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1 General terms
3.1.1
3D printer, noun
machine used for 3D printing (3.3.1)
3.1.2
additive manufacturing, noun
AM
process of joining materials to make parts (3.9.1) from 3D model data, usually layer (3.3.7) upon layer,
as opposed to subtractive manufacturing and formative manufacturing methodologies
Note 1 to entry: Historical terms include: additive fabrication, additive processes, additive techniques, additive
layer manufacturing, layer manufacturing, solid freeform fabrication and freeform fabrication.
Note 2 to entry: The meaning of “additive-”, “subtractive-” and “formative-” manufacturing methodologies is
further discussed in Annex B.
3.1.3
additive system, noun
additive manufacturing system
additive manufacturing equipment
machine and auxiliary equipment used for additive manufacturing (3.1.2)
3.1.4
AM machine, noun
section of the additive manufacturing system (3.1.3) including hardware, machine control software,
required set-up software and peripheral accessories necessary to complete a build cycle (3.3.8) for
producing parts (3.9.1)
1
© ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 6 ----------------------
ISO/ASTM 52900:2021(E)
3.1.5
AM machine user, noun
operator of or entity using an AM machine (3.1.4)
3.1.6
AM system user, noun
additive system user
operator of or entity using an entire additive manufacturing system (3.1.3) or any component of an
additive system (3.1.3)
3.1.7
front, noun
side of the machine that the
operator faces to access the user interface, or primary viewing window, or both
3.1.8
material supplier, noun
provider of material/feedstock (3.6.6) to be processed in an additive manufacturing system (3.1.3)
3.1.9
multi-step process, noun
type of additive manufacturing (3.1.2) process in which parts (3.9.1) are fabricated in two or more
operations where the first typically provides the basic geometric shape and the following consolidates
the part to the fundamental properties of the intended material
Note 1 to entry: Fundamental properties of the intended product material are typically metallic properties for
intended metallic products, ceramic properties for intended ceramic products, polymer properties for intended
polymer (plastic) products and composite material properties for products intended to be made of a composite
material.
Note 2 to entry: Removal of the support structure and cleaning can many times be necessary; however, in this
context, this operation is not considered as a separate process step.
Note 3 to entry: The principle of single-step (3.1.10) and multi-step processes is further discussed in Annex B.
3.1.10
single-step process, noun
type of additive manufacturing (3.1.2) process in which parts (3.9.1) are fabricated in a single operation
where the basic geometric shape and basic material properties of the intended product are achieved
simultaneously
Note 1 to entry: Removal of the support structure and cleaning can many times be necessary; however, in this
context, this operation is not considered as a separate process step.
Note 2 to entry: The principle of single-step and multi-step processes (3.1.9) is further discussed in Annex B.
3.2 Process categories
3.2.1
binder jetting, noun
BJT
additive manufacturing (3.1.2) process in which a liquid bonding agent is selectively deposited to join
powder materials
Note 1 to entry: Identification of different binder jetting processes shall be consistent with the method described
in Annex A.
2
  © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 7 ----------------------
ISO/ASTM 52900:2021(E)
3.2.2
directed energy deposition, noun
DED
additive manufacturing (3.1.2) process in which focused thermal energy is used to fuse materials by
melting as they are being deposited
Note 1 to entry: “Focused thermal energy” means that an energy source (for example laser, electron beam or
plasma arc) is focused to melt the materials being deposited.
Note 2 to entry: Identification of different directed energy deposition processes shall be consistent with the
method described in Annex A.
3.2.3
material extrusion, noun
MEX
additive manufacturing (3.1.2) process in which material is selectively dispensed through a nozzle or
orifice
Note 1 to entry: Identification of different material extrusion processes shall be consistent with the method
described in Annex A.
3.2.4
material jetting, noun
MJT
additive manufacturing (3.1.2) process in which droplets of feedstock material are selectively deposited
Note 1 to entry: Example feedstock materials for material jetting include photopolymer resin and wax.
Note 2 to entry: Identification of different material jetting processes shall be consistent with the method
described in Annex A.
3.2.5
powder bed fusion, noun
PBF
additive manufacturing (3.1.2) process in which thermal energy selectively fuses regions of a powder
bed (3.8.5)
Note 1 to entry: Identification of different powder bed fusion processes shall be consistent with the method
described in Annex A.
3.2.6
sheet lamination, noun
SHL
additive manufacturing (3.1.2) process in which sheets of material are bonded to form a part (3.9.1)
Note 1 to entry: Identification of different sheet lamination processes shall be consistent with the method
described in Annex A.
3.2.7
vat photopolymerization, noun
VPP
additive manufacturing (3.1.2) process in which liquid photopolymer in a vat is selectively cured by
light-activated polymerization
Note 1 to entry: Identification of different vat photopolymerization processes shall be consistent with the method
described in Annex A.
3
© ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 8 ----------------------
ISO/ASTM 52900:2021(E)
3.3 Processing: general
3.3.1
3D printing, noun
fabrication of objects through the deposition of a material using a print head, nozzle or another printer
technology
Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing
(3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including
personal use.
3.3.2
build chamber, noun
enclosed location within the additive manufacturing system (3.1.3) where the parts (3.9.1) are fabricated
3.3.3
build space, noun
location where it is possible for parts (3.9.1) to be fabricated, typically within the build chamber (3.3.2)
or on a build platform (3.3.5)
3.3.4
build volume, noun
total usable volume available in the machine for building parts (3.9.1)
3.3.5
build platform, noun
base which provides a surface upon which the building of the parts (3.9.1) is started and
supported throughout the build process
Note 1 to entry: In some systems, the parts (3.9.1) are built attached to the build platform, either directly or
through a support (3.3.9) structure. In other systems, such as certain types of powder bed (3.8.5) systems, a
direct mechanical fixture between the part and the build platform is not necessarily required.
3.3.6
build surface, noun
area where material is added, normally on the last deposited layer (3.3.7), which becomes the foundation
upon which the next layer is formed
Note 1 to entry: For the first layer, the build surface is often the build platform (3.3.5).
Note 2 to entry: In the case of directed energy deposition (3.2.2) processes, the build surface can be an existing
part onto which material is added.
Note 3 to entry: If the orientation of the material deposition or consolidation means (or both) is (are) variable, it
may be defined relative to the build surface.
3.3.7
layer, noun
material laid out, or spread, to create a surface
3.3.8
build cycle, noun
single process cycle in which one or more components are built by successive joining of material within
the build space (3.3.3) of the additive manufacturing system (3.1.3)
3.3.9
support, noun
structure separate from the part (3.9.1) geometry that is created to provide a base and anchor for the
part during the building process
Note 1 to entry: Supports are typically removed from the part prior to use.
4
  © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 9 ----------------------
ISO/ASTM 52900:2021(E)
Note 2 to entry: For certain processes such as material extrusion (3.2.3) and material jetting (3.2.4), the support
material can be different from the part material and deposited from a separate nozzle or print head.
Note 3 to entry: For certain processes such as metal powder bed fusion (3.2.5) processes, auxiliary supports can
be added to serve as an additional heat sink for the part during the building process.
3.3.10
process parameters, noun
operating parameters and system settings used during a build cycle (3.3.8)
3.3.11
system set-up, noun
configuration of the additive manufacturing system (3.1.3) for a build cycle
3.3.12
manufacturing lot, noun
set of manufactured parts (3.9.1) having commonality between feedstock (3.6.6), production run (3.3.14),
additive manufacturing system (3.1.3) and post-processing (3.6.10) steps (if required) as recorded on a
single manufacturing work order
Note 1 to entry: The additive manufacturing system can include one or several AM machines (3.1.4) and/or post-
processing machine units as agreed by AM (3.1.2) provider and customer.
3.3.13
manufacturing plan, noun
document setting out the specific manufacturing practices, technical resources and sequences of
activities relevant to the production of a particular product including any specified acceptance criteria
at each stage
Note 1 to entry: For additive manufacturing (3.1.2), the manufacturing plan typically includes, but is not limited to,
process parameters (3.3.10), preparation and post processing (3.6.10) operations as well as relevant verification
methods.
Note 2 to entry: Manufacturing plans are typically required under a quality management system such as ISO 9001
and ASQ C1.
3.3.14
production run, noun
set of all parts (3.9.1) produced in one build cycle (3.3.8) or sequential series of build cycles using the
same feedstock (3.6.6) batch and process conditions
3.3.15
process chain, noun
sequence of operations necessary for the part (3.9.1) to achieve desired functionality and properties
3.4 Processing: data
3.4.1
Additive Manufacturing File Format, noun
AMF
file format for communicating additive manufacturing (3.1.2) model data including a description of the
3D surface geometry with native support for colour, materials, lattices, textures, constellations and
metadata
Note 1 to entry: Additive Manufacturing File Format (AMF) can represent one of multiple objects arranged in a
constellation. Similar to STL (3.4.6), the surface geometry is represented by a triangular mesh, but in AMF the
triangles can also be curved. AMF can also specify the material and colour of each volume and the colour of each
[7]
triangle in the mesh. ISO/ASTM 52915 gives the standard specification of AMF.
5
© ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 10 ----------------------
ISO/ASTM 52900:2021(E)
3.4.2
AMF consumer, noun
software reading (parsing) the AMF (3.4.1) file for fabrication, visualization or analysis
Note 1 to entry: AMF files are typically imported by additive manufacturing equipment (3.1.3), as well as viewing,
analysis and verification software.
3.4.3
AMF editor, noun
software reading and rewriting the AMF (3.4.1) file for conversion
Note 1 to entry: AMF editor applications are used to convert an AMF from one form to another, for example
to convert all curved triangles to flat triangles or convert porous material specification into an explicit mesh
surface.
3.4.4
AMF producer, noun
software writing (generating) the AMF (3.4.1) file from original geometric data
Note 1 to entry: AMF files are typically exported by CAD software, scanning software or directly from
computational geometry algorithms.
3.4.5
STEP, noun
standard for the exchange of product model data
Note 1 to entry: This is an International Standard that provides a representation of product information along
[4]
with the necessary mechanisms and definitions to enable product data to be exchanged. ISO 10303 applies to
the representation of product information, including components and assemblies, the exchange of product data,
including storing, transferring, accessing and archiving.
Note 2 to entry: ISO 10303-238, commonly referred to as STEP-NC, specifies the slicing operation and other
mechanical commands in the AM process.
3.4.6
STL, noun
file format for model data describing the surface geometry of an object as a tessellation of triangles
used to communicate 3D geometries to machines in order to build physical parts (3.9.1)
Note 1 to entry: The STL file format was originally developed as part of the CAD package for the early
STereoLithography Apparatus, thus referring to that process. It is sometimes also described as “Standard
Triangulation Language” or “Standard Tessellation Language”, though it has never been recognized as an official
standard by any standards developing organization.
3.4.7
PDES, noun
Product Data Exchange Specification
data exchange specification using STEP (3.4.5)
Note 1 to entry: Originally, a product data exchange specification developed in the 1980s by the IGES/PDES
Organization, a program of US Product Data Association (USPRO). It was adopted as the basis for and subsequently
[4]
superseded by ISO 10303 STEP.
3.4.8
attribute, noun
characteristic representing one or more aspects, descriptors or elements of the data
Note 1 to entry: In object-oriented systems, attributes are characteristics of objects. In Extensible Markup
[10]
Language (XML) , attributes are characteristics of elements (3.3.10).
Note 2 to entry: In the AMF (3.4.1)-file, attributes can, for example, be used to carry notices enabling backwards
traceability to CAD components, or markers that allow track and trace mechanisms for the file.
6
  © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 11 ----------------------
ISO/ASTM 52900:2021(E)
3.4.9
comment, noun
remark in source code which does not affect the behaviour of the program
Note 1 to entry: Comments are used for enhancing human readability of the file and for debugging purposes.
Note 2 to entry: In the AMF (3.4.1)-file, comments can, for example, be used to carry material specification or
notices enabling backwards traceability to CAD components.
3.4.10
element, noun
[10]
information unit within an XML document consisting of a start tag, an end tag, the content between
the tags and any attributes (3.4.8).
Note 1 to entry: In the XML framework of AMF (3.4.1), an element can contain data, attributes structures such as
constellations, as well as including other elements.
3.4.11
facet, noun
three- or four-sided polygon that represents an element of a 3D polygonal mesh surface or model
Note 1 to entry: Triangular facets are used in the file formats most significant to AM (3.1.2): AMF (3.4.1) and STL
(3.4.6); however, AMF files permit a triangular facet to be curved.
3.4.12
surface model, noun
mathematical or digital representation of an object as a set of planar or curved surfaces, or both, that
can, but does not necessarily have to represent a closed volume
3.4.13
3D scanning, noun
3D digitizing
method of acquiring the shape and size of an object as a 3-dimensional representation by recording x,
y, z coordinates on the object’s surface and through software converting the collection of points into
digital data
Note 1 to entry: Typical methods use some amount of automation, coupled with a touch probe, optical sensor or
other device.
Note 2 to entry: In additive manufacturing process chains, 3D scanning can typically be used for generation of
surface models, in situ monitoring, non-destructive testing, as well as verification of the part geometry.
3.5 Processing: positioning, coordinates and orientation
3.5.1
bounding box, noun
orthogonally oriented minimum perimeter cuboid that can span the maximum extents of
the points on the surface of a 3D part (3.9.1)
Note 1 to entry: Where the manufactured part includes the test geometry plus additional external features (for
example labels, tabs or raised lettering), the bounding box may be specified according to the test part geometry
excluding the additional external features if noted. Different varieties of bounding boxes are illustrated in
[8]
ISO/ASTM 52921 .
3.5.2
arbitrarily oriented bounding box, noun
bounding box (3.5.1) calculated without any constraints on the resulting orientation of the
box
7
© ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 12 ----------------------
ISO/ASTM 52900:2021(E)
3.5.3
machine bounding box, noun
bounding box (3.5.1) for which the surfaces are parallel to the machine coordinate system
(3.5.11)
3.5.4
master bounding box, noun
bounding box (3.5.1) which encloses all of the parts (3.9.1) in a single build
3.5.5
geometric centre, noun
centroid
location at the arithmetic middle of the bounding box (3.5.1)
Note 1 to entry: The geometric centre of the bounding box can lie outside the part (3.9.1) that is enclosed by the
bounding box.
3.5.6
orthogonal orientation notation, noun
description of the orientation of the bounding box (3.5.1) according to overall length in decreasing
magnitude, parallel to the axes of the machine coordinate system (3.5.11)
Note 1 to entry: Notation typically consists of a combination of X, Y and Z, each referring to the corresponding
axis as defined by the machine coordinate system.
Note 2 to entry: Orthogonal orientation notation requires that the bounding box be aligned with the machine
coordinate system. Machine coordinate system and different bounding boxes, including examples of orthogonal
[8]
orientation notation, are illustrated in ISO/ASTM 52921 .
3.5.7
initial build orientation, noun
orientation of the part as it is first placed in the build volume (3.3.4)
[8]
Note 1 to entry: Initial build orientation is illustrated in ISO/ASTM 52921 .
3.5.8
part reorientation, noun
rotation around the geometric centre (3.5.5) of the part’s bounding box (3.5.1) from the specified initial
build orientation (3.5.7) of that part (3.9.1)
[8]
Note 1 to entry: Part reorientation is illustrated in ISO/ASTM 52921 .
3.5.9
build envelope, noun
largest external dimensions of the x-axis (3.5.16), y-axis (3.5.17) and z-axis (3.5.18) within the build
space (3.3.3) where parts (3.9.1) can be fabricated
Note 1 to entry: The dimensions of the build space are larger than the build envelope.
3.5.10
nesting, participle
situation when parts (3.9.1
...

NORME ISO/ASTM
INTERNATIONALE 52900
Deuxième édition
2021-11
Fabrication additive — Principes
généraux — Fondamentaux et
vocabulaire
Additive manufacturing — General principles — Fundamentals and
vocabulary
Numéro de référence
ISO/ASTM 52900:2021(F)
© ISO/ASTM International 2021

---------------------- Page: 1 ----------------------
ISO/ASTM 52900:2021(F)
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO/ASTM International 2021
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou un intranet, sans autorisation écrite soit de l’ISO à l’adresse ci-après,
soit d’un organisme membre de l’ISO dans le pays du demandeur. Aux États-Unis, les demandes doivent être adressées à ASTM
International.
ISO copyright office ASTM International
Case postale 401 • Ch. de Blandonnet 8 100 Barr Harbor Drive, PO Box C700
CH-1214 Vernier, Genève West Conshohocken, PA 19428-2959, USA
Tél.: +41 22 749 01 11 Tél.: +610 832 9634
Fax: +41 22 749 09 47 Fax: +610 832 9635
E-mail: copyright@iso.org E-mail: khooper@astm.org
Web: www.iso.org Web: www.astm.org
Publié en Suisse
ii
  © ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO/ASTM 52900:2021(F)
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d'application .1
2 Références normatives .1
3 Termes et définitions . 1
3.1 Termes généraux . 1
3.2 Catégories de procédé . 3
3.3 Traitement: généralités . . 4
3.4 Traitement: données . . 6
3.5 Traitement: positionnement, coordonnées et orientation . 8
3.6 Traitement: matériau . 10
3.7 Traitement: extrusion de matériau .12
3.8 Traitement: fusion sur lit de poudre . 13
3.9 Pièces: généralités . 14
3.10 Pièces: applications . 15
3.11 Pièces: propriétés . 15
3.12 Pièces: évaluation . 17
Annexe A (normative) Identification des procédés de FA basée sur des catégories
de procédé et la détermination des caractéristiques .18
Annexe B (informative) Principes de base .21
Bibliographie .27
Index alphabétique .28
iii
© ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 3 ----------------------
ISO/ASTM 52900:2021(F)
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: www.iso.org/iso/fr/avant-propos.html.
Le présent document a été élaboré par l’ISO/TC 261, Fabrication additive, en coopération avec le
Comité F42 de l’ASTM, Technologies de fabrication additive, dans le cadre d’un accord de partenariat
entre l’ISO et ASTM International dans le but de créer un ensemble commun de normes ISO/ASTM sur
la fabrication additive et en collaboration avec le Comité Européen de Normalisation (CEN), Comité
technique CEN/TC 438, Fabrication additive, conformément à l’Accord de coopération technique entre
l’ISO et le CEN (Accord de Vienne).
Cette deuxième édition de l’ISO/ASTM 52900 remplace la première édition (l’ISO/ASTM 52900:2015),
qui a fait l'objet d'une révision technique. Les principales modifications par rapport à l’édition
précédente sont les suivantes:
— termes et définitions nouveaux et modifiés;
— abréviations ajoutées pour sept catégories de procédé;
— nouvelle annexe pour la spécification des procédés FA sur la base des catégories de procédé et la
détermination des caractéristiques (Annexe A).
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www.iso.org/fr/members.html.
iv
  © ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO/ASTM 52900:2021(F)
Introduction
Fabrication additive (FA) est le terme général pour les technologies qui joignent successivement
du matériau pour créer des objets physiques tels que spécifiés par des données d’un modèle 3D. Ces
technologies sont actuellement utilisées dans diverses applications d’ingénierie industrielle ainsi que
dans d’autres secteurs de la société, comme la médecine, l’éducation, l’architecture, la cartographie, les
jouets et le divertissement.
Au cours du développement de la technologie de la fabrication additive, de nombreux termes et
définitions différents ont été utilisés, souvent en référence à des domaines d’application et à des
marques déposées spécifiques. Ceux-ci sont souvent ambigus et prêtent à confusion, ce qui nuit à la
communication et à une plus large diffusion de cette technologie.
Le présent document a pour objectif de fournir une compréhension basique des principes fondamentaux
des procédés de fabrication additive, et sur cette base, de donner des définitions claires aux termes et
à la nomenclature associés à la technologie de la fabrication additive. Le but de cette normalisation
de la terminologie pour la fabrication additive est de faciliter la communication entre les personnes
concernées par ce domaine technologique dans le monde entier.
v
© ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO/ASTM 52900:2021(F)
Fabrication additive — Principes généraux —
Fondamentaux et vocabulaire
1 Domaine d'application
Le présent document établit et définit les termes utilisés dans la technologie de la fabrication additive
(FA), qui applique le principe de mise en forme additive et construit ainsi des géométries physiques en
trois dimensions (3D) par ajout successif de matériau.
Les termes ont été classés par champs d’application spécifiques.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l’adresse https:// www .electropedia .org/
3.1 Termes généraux
3.1.1
imprimante 3D, nom
machine utilisée pour l’impression 3D (3.3.1)
3.1.2
fabrication additive, nom
FA
procédé d’assemblage de matériaux pour fabriquer des pièces (3.9.1) à partir de données de modèle 3D,
en général couche (3.3.7) après couche, à l’inverse des méthodologies de fabrication soustractive et de
fabrication mise en forme
Note 1 à l'article: Les termes historiques comprennent: fabrication additive, procédés additifs, techniques
additives, fabrication par couches additives, fabrication en couches, fabrication solide en forme libre et fabrication
en forme libre.
Note 2 à l'article: La signification des méthodologies de fabrication «additive», «soustractive» et «mise en forme»
est discutée plus en détail à l’Annexe B.
3.1.3
système additif, nom
système de fabrication additive
équipement de fabrication additive
machine et équipements auxiliaires utilisés pour la fabrication additive (3.1.2)
1
© ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 6 ----------------------
ISO/ASTM 52900:2021(F)
3.1.4
machine de FA, nom
section du système de fabrication additive (3.1.3) comprenant le matériel, le logiciel de commande de la
machine, le logiciel d’installation requis et les accessoires périphériques nécessaires à l’exécution d'un
cycle de fabrication (3.3.8) pour produire des pièces (3.9.1)
3.1.5
utilisateur de machine de FA, nom
opérateur ou entité utilisant une machine de FA (3.1.4)
3.1.6
utilisateur de système FA, nom
utilisateur de système additif
opérateur ou entité utilisant un système de fabrication additive (3.1.3) complet ou tout composant d’un
système additif (3.1.3)
3.1.7
avant, nom
côté de la machine
auquel l’opérateur fait face pour accéder à l’interface utilisateur ou à la fenêtre de visualisation
principale, ou aux deux
3.1.8
fournisseur du matériau, nom
pourvoyeur du matériau/de la matière première (3.6.6) à traiter dans un système de fabrication additive
(3.1.3)
3.1.9
procédé multi-étapes, nom
type de procédé de fabrication additive (3.1.2) dans lequel les pièces (3.9.1) sont fabriquées en deux
opérations ou plus, où la première produit généralement la forme géométrique de base et les suivantes
consolident la pièce pour les propriétés fondamentales du matériau prévu
Note 1 à l'article: Les propriétés fondamentales du matériau du produit prévu sont généralement les propriétés
métalliques pour les produits métalliques prévus, les propriétés céramiques pour les produits céramiques
prévus, les propriétés polymères pour les produits polymères (plastiques) prévus et les propriétés du matériau
composite pour les produits destinés à être constitués d'un matériau composite.
Note 2 à l'article: Le retrait de la structure de support et le nettoyage peuvent être nécessaires à plusieurs
reprises; cependant, dans ce contexte, cette opération n’est considérée comme une étape séparée du procédé.
Note 3 à l'article: Le principe des procédés à étape unique (3.1.10) et multi-étapes est discuté plus en détail à
l’Annexe B.
3.1.10
procédé à étape unique, nom
type de procédé de fabrication additive (3.1.2) dans lequel les pièces (3.9.1) sont fabriquées en une seule
opération, où la forme géométrique de base et les propriétés de base du matériau du produit prévus
sont obtenues simultanément
Note 1 à l'article: Le retrait de la structure de support et le nettoyage peuvent être nécessaires à plusieurs
reprises; cependant, dans ce contexte, cette opération n’est considérée comme une étape séparée du procédé.
Note 2 à l'article: Le principe des procédés à étape unique et multi-étapes (3.1.9) est discuté plus en détail à
l’Annexe B.
2
  © ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 7 ----------------------
ISO/ASTM 52900:2021(F)
3.2 Catégories de procédé
3.2.1
projection de liant, nom
BJT (binder jetting)
procédé de fabrication additive (3.1.2) dans lequel un agent de liaison liquide est déposé de manière
sélective pour assembler des matériaux poudreux
Note 1 à l'article: L'identification des différents procédés de projection de liant doit être cohérente avec la
méthode décrite à l'Annexe A.
3.2.2
dépôt de matière sous énergie concentrée, nom
DED (directed energy deposition)
procédé de fabrication additive (3.1.2) dans lequel l’énergie thermique focalisée est utilisée pour
fusionner des matériaux en les fondant pendant leur dépôt
Note 1 à l'article: «Energie thermique focalisée» signifie qu’une source d’énergie (par exemple, laser, faisceau
d’électrons, ou arc plasma) est focalisée pour faire fondre les matériaux pendant leur dépôt.
Note 2 à l'article: L'identification des différents procédés de dépôt de matière sous énergie concentrée doit être
cohérente avec la méthode décrite à l'Annexe A.
3.2.3
extrusion de matériau, nom
MEX (material extrusion)
procédé de fabrication additive (3.1.2) dans lequel le matériau est distribué de manière sélective par
une buse ou à travers un orifice
Note 1 à l'article: L'identification des différents procédés d’extrusion de matériau doit être cohérente avec la
méthode décrite à l'Annexe A.
3.2.4
projection de matériau, nom
MJT (material jetting)
procédé de fabrication additive (3.1.2) dans lequel des gouttelettes de matière première sont déposées
de manière sélective
Note 1 à l'article: Un exemple de matière première pour la projection de matériau comprend la résine
photopolymère et la cire.
Note 2 à l'article: L'identification des différents procédés de projection de matériau doit être cohérente avec la
méthode décrite à l'Annexe A.
3.2.5
fusion sur lit de poudre, nom
PBF (powder bed fusion)
procédé de fabrication additive (3.1.2) dans lequel l’énergie thermique fusionne de manière sélective
certaines zones d’un lit de poudre (3.8.5)
Note 1 à l'article: L'identification des différents procédés de fusion sur lit de poudre doit être cohérente avec la
méthode décrite à l'Annexe A.
3.2.6
stratification de couches, nom
SHL (sheet lamination)
procédé de fabrication additive (3.1.2) dans lequel des couches de matériau sont liées pour former une
pièce (3.9.1)
Note 1 à l'article: L'identification des différents procédés de stratification de couches doit être cohérente avec la
méthode décrite à l'Annexe A.
3
© ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 8 ----------------------
ISO/ASTM 52900:2021(F)
3.2.7
photopolymérisation en cuve, nom
VPP (vat photopolymerization)
procédé de fabrication additive (3.1.2) dans lequel un photopolymère liquide dans une cuve est durci de
manière sélective par polymérisation activée par la lumière
Note 1 à l'article: L'identification des différents procédés de photopolymérisation en cuve doit être cohérente
avec la méthode décrite à l'Annexe A.
3.3 Traitement: généralités
3.3.1
impression 3D, nom
fabrication d’objets par dépôt d’un matériau au moyen d’une tête d’impression, d’une buse ou d’une
autre technologie d’impression
Note 1 à l'article: Ce terme est souvent utilisé dans un contexte non technique comme synonyme de fabrication
additive (3.1.2) et, dans ces cas, généralement associé à des machines utilisées à des fins non industrielles, y
compris à usage personnel.
3.3.2
chambre de fabrication, nom
emplacement fermé à l’intérieur du système de fabrication additive (3.1.3) où les pièces (3.9.1) sont
fabriquées
3.3.3
espace de fabrication, nom
emplacement où les pièces (3.9.1) peuvent être fabriquées, généralement à l’intérieur de la chambre de
fabrication (3.3.2) ou sur une plateforme de fabrication (3.3.5)
3.3.4
volume de fabrication, nom
volume total utilisable dans la machine pour fabriquer des pièces (3.9.1)
3.3.5
plateforme de fabrication, nom
base qui offre une surface sur laquelle la fabrication des pièces (3.9.1) est lancée et
supportée tout au long du procédé de fabrication
Note 1 à l'article: Dans certains systèmes, les pièces (3.9.1) sont fabriquées en étant fixées à la plateforme de
fabrication, soit directement, soit par le biais d’une structure de support (3.3.9). Dans d’autres systèmes, tels que
certains types de systèmes à lit de poudre (3.8.5), une fixation mécanique directe entre la pièce et la plateforme
de fabrication n’est pas nécessairement requise.
3.3.6
surface de fabrication, nom
zone où le matériau est ajouté, normalement sur la dernière couche (3.3.7) déposée, qui devient la
fondation sur laquelle la couche suivante est formée
Note 1 à l'article: Pour la première couche, la surface de fabrication est souvent la plateforme de fabrication (3.3.5).
Note 2 à l'article: Dans le cas des procédés de dépôt de matière sous énergie concentrée (3.2.2), la surface de
fabrication peut être une pièce existante sur laquelle le matériau est ajouté.
Note 3 à l'article: Si l’orientation du dépôt de matériau ou les moyens de consolidation (ou des deux) est (sont)
variable(s), cela peut être défini par rapport à la surface de fabrication.
3.3.7
couche, nom
matériau déposé, ou étalé, pour créer une surface
4
  © ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 9 ----------------------
ISO/ASTM 52900:2021(F)
3.3.8
cycle de fabrication, nom
cycle de procédé unique dans lequel un ou plusieurs composants sont fabriqués par assemblage
successif de matériau dans l’espace de fabrication (3.3.3) du système de fabrication additive (3.1.3)
3.3.9
support, nom
structure séparée de la géométrie de la pièce (3.9.1) qui est créée pour fournir une base et un point
d’ancrage pour la pièce pendant le procédé de fabrication
Note 1 à l'article: Les supports sont généralement retirés de la pièce avant utilisation.
Note 2 à l'article: Pour certains procédés tels que l’extrusion de matériau (3.2.3) et la projection de matériau
(3.2.4), le matériau de support peut être différent du matériau de la pièce et déposé à partir d’une buse ou d’une
tête d’impression séparée.
Note 3 à l'article: Pour certains procédés tels que les procédés de fusion sur lit de poudre (3.2.5) métallique, des
supports auxiliaires peuvent être ajoutés pour servir de radiateur supplémentaire pour la pièce pendant le
procédé de fabrication.
3.3.10
paramètres du procédé, nom
paramètres de fonctionnement et réglages du système utilisés pendant un cycle de fabrication (3.3.8)
3.3.11
réglage du système, nom
configuration du système de fabrication additive (3.1.3) pour un cycle de fabrication
3.3.12
lot de fabrication, nom
ensemble de pièces (3.9.1) fabriquées présentant des points communs en termes de matière première
(3.6.6), de cycle de production (3.3.14), de système de fabrication additive (3.1.3) et d’étapes de post-
traitement (3.6.10) (si exigées) enregistrés sur une seule commande de fabrication
Note 1 à l'article: Le système de fabrication additive peut comprendre une ou plusieurs machines de FA (3.1.4) et/
ou des machines de post-traitement selon l’accord entre le fournisseur de FA (3.1.2) et le client.
3.3.13
gamme de fabrication, nom
document définissant les pratiques de fabrication, les ressources techniques ainsi que les séquences
d’activités spécifiques pertinentes pour la production d’un produit particulier y compris les critères
spécifiés d’acceptation à chaque étape
Note 1 à l'article: Pour la fabrication additive (3.1.2), la gamme de fabrication comprend généralement, mais sans
s’y limiter, les paramètres du procédé (3.3.10), les opérations de préparation et de post-traitement (3.6.10) ainsi
que les méthodes de vérification pertinentes.
Note 2 à l'article: Les plans de fabrication sont généralement requis dans le cadre d’un système de gestion de la
qualité tel que l’ISO 9001 et l’ASQ C1.
3.3.14
cycle de production, nom
ensemble de toutes les pièces (3.9.1) produites en un seul cycle de fabrication (3.3.8) ou en une série
séquentielle de cycles de fabrication en utilisant le même lot de matière première (3.6.6) et les mêmes
conditions de procédé
3.3.15
chaîne de procédé, nom
séquence des opérations nécessaires pour obtenir la fonctionnalité et les propriétés souhaitées de la
pièce (3.9.1)
5
© ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 10 ----------------------
ISO/ASTM 52900:2021(F)
3.4 Traitement: données
3.4.1
format Additive Manufacturing File, nom
AMF
format de fichier destiné à communiquer des données de modèle de fabrication additive (3.1.2)
comprenant une description de la géométrie de surface en 3D avec un support natif pour la couleur, les
matériaux, les treillis, les textures, les constellations et les métadonnées
Note 1 à l'article: Le format Additive Manufacturing File (AMF) peut représenter l’un de nombreux objets
agencés en une constellation. De même que dans le format STL (3.4.6), la géométrie de surface est représentée
par un maillage triangulaire, mais dans l’AMF les triangles peuvent également être courbes. L’AMF peut
également spécifier le matériau et la couleur de chaque volume et la couleur de chaque triangle dans le maillage.
[7]
L’ISO/ASTM 52915 donne les spécifications normalisées pour l’AMF.
3.4.2
consommateur d’AMF, nom
logiciel qui lit (analyse) le fichier AMF (3.4.1) pour la fabrication, la visualisation et l’analyse
Note 1 à l'article: Les fichiers AMF sont généralement importés par l’équipement de fabrication additive (3.1.3),
ainsi que le logiciel de visualisation, d’analyse et de vérification.
3.4.3
éditeur d’AMF, nom
logiciel qui lit et réécrit le fichier AMF (3.4.1) pour la conversion
Note 1 à l'article: Les applications de l’éditeur d’AMF sont utilisées pour convertir un AMF d’une forme en une
autre, par exemple, pour convertir tous les triangles courbes en triangles plats ou convertir une spécification
relative à un matériau poreux en une surface de maillage explicite.
3.4.4
producteur d’AMF, nom
logiciel qui écrit (génère) le fichier AMF (3.4.1) à partir des données géométriques d’origine
Note 1 à l'article: Les fichiers AMF sont généralement exportés par un logiciel de CAO, un logiciel de balayage ou
directement à partir des algorithmes de la géométrie computationnelle.
3.4.5
STEP, nom
norme d’échange de données de modèles de produit
Note 1 à l'article: C’est une Norme internationale qui fournit une représentation des informations de produit, ainsi
[4]
que les mécanismes et définitions nécessaires pour permettre l’échange des données de produit. L’ISO 10303
s’applique à la représentation des informations de produit, y compris les composants et les assemblages, l’échange
des données du produit y compris le stockage, le transfert, l'accès et l'archivage.
Note 2 à l'article: L'ISO 10303-238, communément appelée STEP-NC, spécifie l'opération de couches et d'autres
commandes mécaniques dans le procédé de FA.
3.4.6
STL, nom
format de fichier pour données de modèle décrivant la géométrie de surface d’un objet comme un
pavage de triangles, utilisé pour communiquer des géométries 3D aux machines afin de fabriquer des
pièces (3.9.1) physiques
Note 1 à l'article: Le format de fichier STL a été développé à l'origine comme une partie d'un ensemble CAO pour
les débuts de l'appareil de STéréoLithographie, se référant donc à ce procédé. Il est parfois également décrit
comme «Standard Triangulation Language» ou «Standard Tessellation Language», si bien qu'il n'a jamais été
reconnu comme norme officielle par aucun organisme d’élaboration de normes.
6
  © ISO/ASTM International 2021 – Tous droits réservés

---------------------- Page: 11 ----------------------
ISO/ASTM 52900:2021(F)
3.4.7
PDES, nom
Product Data Exchange Specification
spécification d'échange de données utilisant STEP (3.4.5)
Note 1 à l'article: À l’origine une spécification d’échange de données de produit développée dans les années 1980
par l’Organisation IGES/PDES, programme de l’association américaine de données de produit (US Product Data
[4]
Association, USPRO). Elle a été adoptée comme base puis remplacée par STEP de l’ISO 10303 .
3.4.8
attribut, nom
caractéristique représentant un ou plusieurs aspects, descripteurs ou éléments des données
Note 1 à l'article: Dans les systèmes orientés objet, les attributs sont les caractéristiques des objets. Dans le
[10]
langage de balisage extensible (Extensible Markup Language, XML) , les attributs sont des caractéristiques des
éléments (3.3.10).
Note 2 à l'article: Dans le fichier AMF (3.4.1), les attributs peuvent, par exemple, être utilisés pour porter des
notices permettant une traçabilité en amont jusqu'aux composants CAO, ou des marqueurs qui permettent des
mécanismes de suivi et de traçabilité du fichier.
3.4.9
commentaire, nom
remarque en code source qui n'affecte pas le comportement du programme
Note 1 à l'article: Les commentaires sont utilisés pour améliorer la lisibilité humaine du fichier et à des fins de
débogage.
Note 2 à l'article: Dans le fichier AMF (3.4.1), les commentaires peuvent, par exemple, être utilisés pour porter des
spécifications de matériau ou des notices permettant une traçabilité en amont jusqu'aux composants CAO.
3.4.10
élément, nom
[10]
unité d’information dans un document XML composée d’une balise de début, d'une balise de fin, d’un
contenu entre les balises, et d’attributs (3.4.8)
Note 1 à l'article: Dans le cadre XML de l'AMF (3.4.1), un élément peut contenir des données, des structures
d'attributs telles que des constellations, aussi bien que comprendre d'autres éléments.
3.4.11
facette, nom
polygone à trois ou quatre côtés qui représente un élément d’une surface ou d’un modèle de maillage
polygonal en 3D
Note 1 à l'article: Des facettes triangulaires sont utilisées dans les formats de fichier les plus importants de la FA
(3.1.2): AMF (3.4.1) et STL (3.4.6); cependant les fichiers AMF permettent à une facette triangulaire d’être courbe.
3.4.12
modèle de surface, nom
représentation mathématique ou numérique d’un objet sous forme d’ensembles de surfaces planes ou
courbes ou les deux, pouvant, mais non nécessairement, représenter un volume fermé
3.4.13
balayage 3D, nom
numérisation 3D
méthode d’acquisition
...

FINAL
INTERNATIONAL ISO/ASTM
DRAFT
STANDARD FDIS
52900
ISO/TC 261
Additive manufacturing — General
Secretariat: DIN
principles — Fundamentals and
Voting begins on:
2021­08­19 vocabulary
Voting terminates on:
Fabrication additive — Principes généraux — Fondamentaux et
2021­10­14
vocabulaire
ISO/CEN PARALLEL PROCESSING
RECIPIENTS OF THIS DRAFT ARE INVITED TO
SUBMIT, WITH THEIR COMMENTS, NOTIFICATION
OF ANY RELEVANT PATENT RIGHTS OF WHICH
THEY ARE AWARE AND TO PROVIDE SUPPOR TING
DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
Reference number
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO­
ISO/ASTM FDIS 52900:2021(E)
LOGICAL, COMMERCIAL AND USER PURPOSES,
DRAFT INTERNATIONAL STANDARDS MAY ON
OCCASION HAVE TO BE CONSIDERED IN THE
LIGHT OF THEIR POTENTIAL TO BECOME STAN­
DARDS TO WHICH REFERENCE MAY BE MADE IN
©
NATIONAL REGULATIONS. ISO/ASTM 2021

---------------------- Page: 1 ----------------------
ISO/ASTM FDIS 52900:2021(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO/ASTM International 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be
reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester. In the United States, such requests should be sent to ASTM International.
ISO copyright office ASTM International
CP 401 • Ch. de Blandonnet 8 100 Barr Harbor Drive, PO Box C700
CH­1214 Vernier, Geneva West Conshohocken, PA 19428­2959, USA
Phone: +41 22 749 01 11 Phone: +610 832 9634
Fax: +610 832 9635
Email: copyright@iso.org Email: khooper@astm.org
Website: www.iso.org Website: www.astm.org
Published in Switzerland
ii © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 2 ----------------------
ISO/ASTM FDIS 52900:2021(E)

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
3.1 General terms . 1
3.2 Process categories . 2
3.3 Processing: general . 4
3.4 Processing: data . 5
3.5 Processing: positioning, coordinates and orientation . 7
3.6 Processing: material .10
3.7 Processing: material extrusion .11
3.8 Processing: powder bed fusion .12
3.9 Parts: general .14
3.10 Parts: applications.14
3.11 Parts: properties .14
3.12 Parts: evaluation .16
Annex A (normative) Identification of AM processes based on process categories and
determining characteristics .17
Annex B (informative) Basic principles .20
Bibliography .25
Alphabetical index .26
© ISO/ASTM International 2021 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO/ASTM FDIS 52900:2021(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non­governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso .org/
iso/ foreword .html.
This document was prepared by ISO/TC 261, Additive manufacturing, in cooperation with ASTM
Committee F42, Additive Manufacturing Technologies, on the basis of a partnership agreement between
ISO and ASTM International with the aim to create a common set of ISO/ASTM standards on additive
manufacturing.
This second edition of ISO/ASTM 52900 replaces the first edition (ISO/ASTM 52900:2015), which has
been technically revised. The main changes compared to the previous edition are as follows:
— new and modified terms and definitions;
— abbreviations added for seven process categories;
— new annex for the specification of AM processes based on process categories and determining
characteristics (Annex A).
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 4 ----------------------
ISO/ASTM FDIS 52900:2021(E)

Introduction
Additive manufacturing (AM) is the general term for those technologies that successively join material
to create physical objects as specified by 3D model data. These technologies are presently used for
various applications in engineering industry as well as other areas of society, such as medicine,
education, architecture, cartography, toys and entertainment.
During the development of additive manufacturing technology, there have been numerous different
terms and definitions in use, often with reference to specific application areas and trademarks. This
is often ambiguous and confusing, which hampers communication and wider application of this
technology.
It is the intention of this document to provide a basic understanding of the fundamental principles
for additive manufacturing processes, and based on this, to give clear definitions for terms and
nomenclature associated with additive manufacturing technology. The objective of this standardization
of terminology for additive manufacturing is to facilitate communication between people involved in
this field of technology on a worldwide basis.
© ISO/ASTM International 2021 – All rights reserved v

---------------------- Page: 5 ----------------------
FINAL DRAFT INTERNATIONAL STANDARD ISO/ASTM FDIS 52900:2021(E)
Additive manufacturing — General principles —
Fundamentals and vocabulary
1 Scope
This document establishes and defines terms used in additive manufacturing (AM) technology, which
applies the additive shaping principle and thereby builds physical three-dimensional (3D) geometries
by successive addition of material.
The terms have been classified into specific fields of application.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1 General terms
3.1.1
3D printer, noun
machine used for 3D printing (3.3.1)
3.1.2
additive manufacturing, noun
AM
process of joining materials to make parts (3.9.1) from 3D model data, usually layer (3.3.7) upon layer,
as opposed to subtractive manufacturing and formative manufacturing methodologies
Note 1 to entry: Historical terms include: additive fabrication, additive processes, additive techniques, additive
layer manufacturing, layer manufacturing, solid freeform fabrication and freeform fabrication.
Note 2 to entry: The meaning of “additive-”, “subtractive-” and “formative-” manufacturing methodologies is
further discussed in Annex B.
3.1.3
additive system, noun
additive manufacturing system
additive manufacturing equipment
machine and auxiliary equipment used for additive manufacturing (3.1.2)
3.1.4
AM machine, noun
section of the additive manufacturing system (3.1.3) including hardware, machine control software,
required set-up software and peripheral accessories necessary to complete a build cycle (3.3.8) for
producing parts (3.9.1)
© ISO/ASTM International 2021 – All rights reserved 1

---------------------- Page: 6 ----------------------
ISO/ASTM FDIS 52900:2021(E)

3.1.5
AM machine user, noun
operator of or entity using an AM machine (3.1.4)
3.1.6
AM system user, noun
additive system user
operator of or entity using an entire additive manufacturing system (3.1.3) or any component of an
additive system (3.1.3)
3.1.7
front, noun
side of the machine that the
operator faces to access the user interface, or primary viewing window, or both
3.1.8
material supplier, noun
provider of material/feedstock (3.6.6) to be processed in an additive manufacturing system (3.1.3)
3.1.9
multi-step process, noun
type of additive manufacturing (3.1.2) process in which parts (3.9.1) are fabricated in two or more
operations where the first typically provides the basic geometric shape and the following consolidates
the part to the fundamental properties of the intended material
Note 1 to entry: Fundamental properties of the intended product material are typically metallic properties for
intended metallic products, ceramic properties for intended ceramic products, polymer properties for intended
polymer (plastic) products and composite material properties for products intended to be made of a composite
material.
Note 2 to entry: Removal of the support structure and cleaning can many times be necessary; however, in this
context, this operation is not considered as a separate process step.
Note 3 to entry: The principle of single-step (3.1.10) and multi­step processes is further discussed in Annex B.
3.1.10
single-step process, noun
type of additive manufacturing (3.1.2) process in which parts (3.9.1) are fabricated in a single operation
where the basic geometric shape and basic material properties of the intended product are achieved
simultaneously
Note 1 to entry: Removal of the support structure and cleaning can many times be necessary; however, in this
context, this operation is not considered as a separate process step.
Note 2 to entry: The principle of single-step and multi-step processes (3.1.9) is further discussed in Annex B.
3.2 Process categories
3.2.1
binder jetting, noun
BJT
additive manufacturing (3.1.2) process in which a liquid bonding agent is selectively deposited to join
powder materials
Note 1 to entry: Identification of different binder jetting processes shall be consistent with the method described
in Annex A.
2 © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 7 ----------------------
ISO/ASTM FDIS 52900:2021(E)

3.2.2
directed energy deposition, noun
DED
additive manufacturing (3.1.2) process in which focused thermal energy is used to fuse materials by
melting as they are being deposited
Note 1 to entry: “Focused thermal energy” means that an energy source (for example laser, electron beam or
plasma arc) is focused to melt the materials being deposited.
Note 2 to entry: Identification of different directed energy deposition processes shall be consistent with the
method described in Annex A.
3.2.3
material extrusion, noun
MEX
additive manufacturing (3.1.2) process in which material is selectively dispensed through a nozzle or
orifice
Note 1 to entry: Identification of different material extrusion processes shall be consistent with the method
described in Annex A.
3.2.4
material jetting, noun
MJT
additive manufacturing (3.1.2) process in which droplets of feedstock material are selectively deposited
Note 1 to entry: Example feedstock materials for material jetting include photopolymer resin and wax.
Note 2 to entry: Identification of different material jetting processes shall be consistent with the method
described in Annex A.
3.2.5
powder bed fusion, noun
PBF
additive manufacturing (3.1.2) process in which thermal energy selectively fuses regions of a powder
bed (3.8.5)
Note 1 to entry: Identification of different powder bed fusion processes shall be consistent with the method
described in Annex A.
3.2.6
sheet lamination, noun
SHL
additive manufacturing (3.1.2) process in which sheets of material are bonded to form a part (3.9.1)
Note 1 to entry: Identification of different sheet lamination processes shall be consistent with the method
described in Annex A.
3.2.7
vat photopolymerization, noun
VPP
additive manufacturing (3.1.2) process in which liquid photopolymer in a vat is selectively cured by
light-activated polymerization
Note 1 to entry: Identification of different vat photopolymerization processes shall be consistent with the method
described in Annex A.
© ISO/ASTM International 2021 – All rights reserved 3

---------------------- Page: 8 ----------------------
ISO/ASTM FDIS 52900:2021(E)

3.3 Processing: general
3.3.1
3D printing, noun
fabrication of objects through the deposition of a material using a print head, nozzle or another printer
technology
Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing
(3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including
personal use.
3.3.2
build chamber, noun
enclosed location within the additive manufacturing system (3.1.3) where the parts (3.9.1) are fabricated
3.3.3
build space, noun
location where it is possible for parts (3.9.1) to be fabricated, typically within the build chamber (3.3.2)
or on a build platform (3.3.5)
3.3.4
build volume, noun
total usable volume available in the machine for building parts (3.9.1)
3.3.5
build platform, noun
base which provides a surface upon which the building of the parts (3.9.1) is started and
supported throughout the build process
Note 1 to entry: In some systems, the parts (3.9.1) are built attached to the build platform, either directly or
through a support (3.3.9) structure. In other systems, such as certain types of powder bed (3.8.5) systems, a
direct mechanical fixture between the part and the build platform is not necessarily required.
3.3.6
build surface, noun
area where material is added, normally on the last deposited layer (3.3.7), which becomes the foundation
upon which the next layer is formed
Note 1 to entry: For the first layer, the build surface is often the build platform (3.3.5).
Note 2 to entry: In the case of directed energy deposition (3.2.2) processes, the build surface can be an existing
part onto which material is added.
Note 3 to entry: If the orientation of the material deposition or consolidation means (or both) is (are) variable, it
may be defined relative to the build surface.
3.3.7
layer, noun
material laid out, or spread, to create a surface
3.3.8
build cycle, noun
single process cycle in which one or more components are built by successive joining of material within
the build space (3.3.3) of the additive manufacturing system (3.1.3)
3.3.9
support, noun
structure separate from the part (3.9.1) geometry that is created to provide a base and anchor for the
part during the building process
Note 1 to entry: Supports are typically removed from the part prior to use.
4 © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 9 ----------------------
ISO/ASTM FDIS 52900:2021(E)

Note 2 to entry: For certain processes such as material extrusion (3.2.3) and material jetting (3.2.4), the support
material can be different from the part material and deposited from a separate nozzle or print head.
Note 3 to entry: For certain processes such as metal powder bed fusion (3.2.5) processes, auxiliary supports can
be added to serve as an additional heat sink for the part during the building process.
3.3.10
process parameters, noun
operating parameters and system settings used during a build cycle (3.3.8)
3.3.11
system set-up, noun
configuration of the additive manufacturing system (3.1.3) for a build cycle
3.3.12
manufacturing lot, noun
set of manufactured parts (3.9.1) having commonality between feedstock (3.6.6), production run (3.3.14),
additive manufacturing system (3.1.3) and post-processing (3.6.10) steps (if required) as recorded on a
single manufacturing work order
Note 1 to entry: The additive manufacturing system can include one or several AM machines (3.1.4) and/or post­
processing machine units as agreed by AM (3.1.2) provider and customer.
3.3.13
manufacturing plan, noun
document setting out the specific manufacturing practices, technical resources and sequences of
activities relevant to the production of a particular product including any specified acceptance criteria
at each stage
Note 1 to entry: For additive manufacturing (3.1.2), the manufacturing plan typically includes, but is not limited to,
process parameters (3.3.10), preparation and post processing (3.6.10) operations as well as relevant verification
methods.
Note 2 to entry: Manufacturing plans are typically required under a quality management system such as ISO 9001
and ASQ C1.
3.3.14
production run, noun
set of all parts (3.9.1) produced in one build cycle (3.3.8) or sequential series of build cycles using the
same feedstock (3.6.6) batch and process conditions
3.3.15
process chain, noun
sequence of operations necessary for the part (3.9.1) to achieve desired functionality and properties
3.4 Processing: data
3.4.1
Additive Manufacturing File Format, noun
AMF
file format for communicating additive manufacturing (3.1.2) model data including a description of the
3D surface geometry with native support for colour, materials, lattices, textures, constellations and
metadata
Note 1 to entry: Additive Manufacturing File Format (AMF) can represent one of multiple objects arranged in a
constellation. Similar to STL (3.4.6), the surface geometry is represented by a triangular mesh, but in AMF the
triangles can also be curved. AMF can also specify the material and colour of each volume and the colour of each
[7]
triangle in the mesh. ISO/ASTM 52915 gives the standard specification of AMF.
© ISO/ASTM International 2021 – All rights reserved 5

---------------------- Page: 10 ----------------------
ISO/ASTM FDIS 52900:2021(E)

3.4.2
AMF consumer, noun
software reading (parsing) the AMF (3.4.1) file for fabrication, visualization or analysis
Note 1 to entry: AMF files are typically imported by additive manufacturing equipment (3.1.3), as well as viewing,
analysis and verification software.
3.4.3
AMF editor, noun
software reading and rewriting the AMF (3.4.1) file for conversion
Note 1 to entry: AMF editor applications are used to convert an AMF from one form to another, for example
to convert all curved triangles to flat triangles or convert porous material specification into an explicit mesh
surface.
3.4.4
AMF producer, noun
software writing (generating) the AMF (3.4.1) file from original geometric data
Note 1 to entry: AMF files are typically exported by CAD software, scanning software or directly from
computational geometry algorithms.
3.4.5
STEP, noun
standard for the exchange of product model data
Note 1 to entry: This is an International Standard that provides a representation of product information along
[4]
with the necessary mechanisms and definitions to enable product data to be exchanged. ISO 10303 applies to
the representation of product information, including components and assemblies, the exchange of product data,
including storing, transferring, accessing and archiving.
Note 2 to entry: ISO 10303-238, commonly referred to as STEP-NC, specifies the slicing operation and other
mechanical commands in the AM process.
3.4.6
STL, noun
file format for model data describing the surface geometry of an object as a tessellation of triangles
used to communicate 3D geometries to machines in order to build physical parts (3.9.1)
Note 1 to entry: The STL file format was originally developed as part of the CAD package for the early
STereoLithography Apparatus, thus referring to that process. It is sometimes also described as “Standard
Triangulation Language” or “Standard Tessellation Language”, though it has never been recognized as an official
standard by any standards developing organization.
3.4.7
PDES, noun
Product Data Exchange Specification
data exchange specification using STEP (3.4.5)
Note 1 to entry: Originally, a product data exchange specification developed in the 1980s by the IGES/PDES
Organization, a program of US Product Data Association (USPRO). It was adopted as the basis for and subsequently
[4]
superseded by ISO 10303 STEP.
3.4.8
attribute, noun
characteristic representing one or more aspects, descriptors or elements of the data
Note 1 to entry: In object-oriented systems, attributes are characteristics of objects. In Extensible Markup
[10]
Language (XML), attributes are characteristics of elements (3.3.10).
Note 2 to entry: In the AMF (3.4.1)-file, attributes can, for example, be used to carry notices enabling backwards
traceability to CAD components, or markers that allow track and trace mechanisms for the file.
6 © ISO/ASTM International 2021 – All rights reserved

---------------------- Page: 11 ----------------------
ISO/ASTM FDIS 52900:2021(E)

3.4.9
comment, noun
remark in source code which does not affect the behaviour of the program
Note 1 to entry: Comments are used for enhancing human readability of the file and for debugging purposes.
Note 2 to entry: In the AMF (3.4.1)-file, comments can, for example, be used to carry material specification or
notices enabling backwards traceability to CAD components.
3.4.10
element, noun
[10]
information unit within an XML document consisting of a start tag, an end tag, the content between
the tags and any attributes (3.4.8).
Note 1 to entry: In the XML framework of AMF (3.4.1), an element can contain data, attributes structures such as
constellations, as well as including other elements.
3.4.11
facet, noun
three- or four-sided polygon that represents an element of a 3D polygonal mesh surface or model
Note 1 to entry: Triangular facets are used in the file formats most significant to AM (3.1.2): AMF (3.4.1) and STL
(3.4.6); however, AMF files permit a triangular facet to be curved.
3.4.12
surface model, noun
mathematical or digital representation of an object as a set of planar or curved surfaces, or both, that
can, but does not necessarily have to represent a closed volume
3.4.13
3D scanning, noun
3D digitizing
method of acquiring the shape and size of an object as a 3-dimensional representation by recording x,
y, z coordinates on the object’s surface and through software converting the collection of points into
digital data
Note 1 to entry: Typical methods use some amount of automation, coupled with a touch probe, optical sensor or
other device.
Note 2 to entry: In additive manufacturing process chains, 3D scanning can typically be used for generation of
surface models, in situ monitoring, non-destructive testing, as well as verification of the part geometry.
3.5 Processing: positioning, coordinates and orientation
3.5.1
bounding box, noun
orthogonally oriented minimum perimeter cuboid that can span the maximum extents of
the points on the surface of a 3D part (3.9.1)
Note 1 to entry: Where the manufactured part includes the test geometry plus additional external features (for
example labels, tabs or raised lettering), the bounding box may be specified according to the test part geometry
excluding the additional external features if noted. Different varieties of bounding boxes are illustrated in
[8]
ISO/ASTM 52921 .
3.5.2
arbitrarily oriented bounding box, noun
bounding box (3.5.1) calculated without any constraints on the resulting orientation of the
box
© ISO/ASTM International 2021 – All rights reserved 7

---------------------- Page: 12 ----------------------
ISO/ASTM FDIS 52900:2021(E)

3.5.3
machine bounding box, noun
bounding box (3.5.1) for which the surfaces are parallel to the machine coordinate system
(3.5.11)
3.5.4
master bounding box, noun
bounding box (3.5.1) which encloses all of the parts (3.9.1) in a single build
3.5.5
geometric centre, noun
centroid
location at the arithmetic middle of the bounding box (3.5.1)
Note 1 to entry: The geometric centre of the bounding box can lie outside the part (3.9.1) that is enclosed by the
bounding box.
3.5.6
orthogonal orientation notation, noun
description of the orientation of the bounding box (3.5.1) according to overall length in decreasing
magnitude, parallel to the axes of the machine coordinate system (3.5.11)
Note 1 to entry: Notation typically consists of a combination of X, Y and Z, each referring to the corresponding
axis as defined by the machine coordinate system.
Note 2 to entry: Orthogonal orientation notation requires that the bounding box be aligned with the machine
coordinate system. Machine coordinate system and different bounding boxes, including examples of orthogonal
[8]
orientation notation, are illustrated in ISO/ASTM 52921 .
3.5.7
initial build orientation, noun
orientation of the part as it is first placed in the build volume (3.3.4)
[8]
Note 1 to entry: Initial build orientation is illustrated in ISO/ASTM 52921 .
3.5.8
part reorientation, noun
rotation around the geometric centre (3.5.5) of the part’s bounding box (3.5.1) from the
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.